
Modern Assembly Language Programming
with the

ARM processor
Chapter 4: Data Processing and Special Instructions



1 Introduction

2 Checking Conditions

3 Operand2

4 Data Processing Instructions

5 Special Instructions

6 Examples

7 Summary



ARM User Program Registers

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11 (fp)
r12 (ip)
r13 (sp)
r14 (lr)
r15 (pc)

CPSR

Thirteen general-purpose registers (r0-r12)

The stack pointer (r13 or sp)

The link register (r14 or lr)

The program counter (r15 or pc)

Current Program Status Register (CPSR)



Instruction Categories

Load/Store Instructions

Data processing Instructions

Arithmetic Operations

Logical Operations

Comparison Operations

Data Movement Operations

Multiplication Operations

Branch Instructions

Branch with Link (subroutine call)

Conditional Branches

Special Instructions

Pseudo-Instructions



Hardware-Related Register Use

All instructions can access r0-r14 directly.

Most instructions also allow use of the program counter (r15).

Specific instructions to allow access to CPSR.

r14, r15, and CPSR are “hardware special”.



CPSR

The CPSR contains four “flag” bits (bits 28-31).

Data Processing Instructions can affect the flag bits (if the programmer wants
them to).

The meaning of the flags depends on the type of instruction that set them.

These bits can be used by subsequent instructions to control execution and
branching.

Most instructions can have a condition attached, to control whether or not they
are actually executed.



CPSR Condition Bits

The following table shows the meaning of the four bits depending on the type of
instruction that set or cleared them.

Name Logical Instruction Arithmetic Instruction

N No meaning Bit 31 of the result has been set.
Indicates a negative number in
signed operations.

Z Result is all zeroes Result of operation was zero
C After Shift operation ‘1’ was left in

carry flag
Result was greater than 32 bits

V No meaning Result was greater than 31 bits.
Indicates a possible corruption of
the sign bit in signed numbers.



Conditional Execution

op{<cond>} operands

<cond> English meaning
al always (this is the default <cond>
eq Z set (=)
ne Z clear (6=)
ge N set and V set, or N clear and V clear (≥)
lt N set and V clear, or N clear and V set (<)
gt Z clear, and either N set and V set, or N clear and V set (>)
le Z set, or N set and V clear,or N clear and V set (≤)
hi C set and Z clear (unsigned >)
ls C clear or Z (unsigned ≤)
hs C set (unsigned ≥)
cs Alternate name for HS
lo C clear (unsigned <)
cc Alternate name for LO
mi N set (result < 0)
pl N clear (result ≥ 0)
vs V set (overflow)
vc V clear (no overflow)



Example Data Processing Instruction

Syntax:
<Operation>{<cond>}{s|S} Rd, Rn, Operand2

Examples:

1 add r0, r1, r2 @ r0=r1+r2
2 add r8, r5, r7 @ r8=r5+r7
3 addne r9, r1, r3 @ if(ne) then r9=r1+r3
4 adds r4, r6, r7 @ r4=r6+r7 and set SPSR flags
5 addeqs r6, r8, r2 @ if(eq) r6=r8+r2 and set SPSR flags
6 adds r0, r1, r2 @ r0=r1+r2 AND the condition flags
7 @ are updated
8 addcs r3, r4, r5 @ If the carry bit is set,
9 @ then r3=r4+r5,

10 @ else ignore this instruction
11 adcs r2,r4,r6 @ Add r4, r6, and the carry bit,
12 @ store the result in r2, and set
13 @ the SPSR flags



Operand2

Most of the data processing instructions use Operand2 as the second operand.

Operand2 can be one of three things:

A register (r0-r15)

A shifted or rotated register

A 32-bit immediate value that can be constructed by shifting, rotating, and/or
complementing an 8-bit immediate value



Shifting Operand2

There are five mnemonics that can be used to specify an arithmetic or logical
<shift_op>, or a rotation

lsl Logical Shift Left
lsr Logical Shift Right
asr Arithmetic Shift Right
ror Rotate Right

Note: An arithmetic shift left is equivalent to a logical shift left.

There is also a mnemonic for an extended rotation

rrx Rotate Right with Extend

The RRX operation rotates one place to the right but the Carry flag is used along with
Rx to provide a 33 bit quantity to be rotated.



Forms for Operand2

1 #<immediate> (For 32-bit immediate values that can be constructed by shifting
and complementing an 8 bit value.)

2 Rm (Any of the 16 registers r0-r15)

3 Rm, <shift_op> #<shift_imm>
4 Rm, <shift_op> Rs

5 Rm, RRX



More on Immediate values

The assembler must be able to construct the value using only 8 bits of data and a shift or rotate,
and/or a complement.

Examples:

#32 Ok because it is between 0 and 255.
#1021 Illegal because the number cannot be created from an 8-bit value

using shift/rotate/complement.
#1024 Ok because it is 1 shifted left 10 bits.
#-1 Ok because it is the one’s complement of 0
#0xFFFFFFFE Ok because it is the one’s complement of 1
#0xEFFFFFFF Ok because it is the one’s complement of 1 shifted left 31 bits

For immediate values that can cannot be constructed by shifting and complementing an 8 bit
value, we have to use

ldr Rn,=<immediate|symbol>

Then Rn can be used as Operand2.



Arithmetic Operations

Operations:
ADD Rn + operand2 @ Add
ADC Rn + operand2 + carry @ Add with carry
SUB Rn − operand2 @ Subtract
SBC Rn − operand2 + carry − 1 @ Subtract with carry (borrow)
RSB operand2 − Rn @ Reverse subtract
RSC operand2 − Rn + carry − 1 @ Reverse subtract with carry

Syntax:
<Operation>{<cond>}{S} Rd, Rn, Operand2

The optional S specifies whether or not the instruction should affect the bits in the CPSR.

Examples

1 add r0, r1, r2 @ r0=r1+r2 and don’t set CPSR flags
2 subgt r3, r3, #1 @ if (GT) then r3=r3-1 and don’t set
3 @ CPSR flags\\
4 rsbles r4, r5, #5 @ if (LE) then r4=5-r5 and set CPSR
5 @ flags



Logical Operations

Operations:
AND Rn & operand2 @ AND
EOR Rn ˆ operand2 @ Exclusive OR
ORR Rn | operand2 @ OR
ORN !(Rn | operand2) @ NOR
BIC Rn & !operand2 @ AND NOT (Bit Clear)

Syntax:
<Operation>{<cond>}{S} Rd, Rn, Operand2

The optional S specifies whether or not the instruction should affect the bits in the CPSR.

Examples

1 and r0, r1, r2 @ r0=r1&r2 and don’t set CPSR flags
2 biceq r3, r3, #1 @ if (EQ) then r3=r3&!0x00000001 and
3 @ don’t set CPSR flags
4 eorles r4, r5, #5 @ if (LE) then r4=R5̂ 0x00000005 and
5 @ set CPSR flags



Comparison Operations

Comparison operations update the CPSR flags, but have no other effect.

Operations:
CMP Rn − operand2 @ Compare
CMN Rn + operand2 @ Compare Negative
TST Rn & operand2 @ Test
TEQ Rn ˆ operand2 @ Test equivalence

Syntax:
<Operation>{<cond>} Rn, Operand2

Examples

1 cmp r0, r1 @ Compare r0 to r1 and set CPSR flags
2 tsteq r2, #5 @ if (EQ) Compare r2 to 5
3 @ and set CPSR flags



Data Movement Operations

Operations:
MOV Rd, operand2 @ Copy operand2
MVN Rd, !operand2 @ Copy 1’s complement of operand2

Syntax:
<Operation>{<cond>}{S} Rd, Operand2

Examples

1 mov r0, r1 @ r0 = r1
2 movs r2, #10 @ r2 = 10
3 mvneq r1, #1 @ if (EQ) then r1 = -1
4 movles r2, r2, ASR #1 @ if (LE) then r2 = r2 / 2
5 @ and set CPSR flags



Multiply Operations with 32-bit Results

Operation:
MUL Rd = Rm × Rs @ Multiply with 32-bit result

Syntax:
MUL{<cond>}{S} Rd, Rm, Rs

Operation:
MLA Rd = Rm × Rs + Rn @ Multiply-accumulate with 32-bit result

Syntax:
MLA{<cond>}{S} Rd, Rm, Rs, Rn

Examples

1 mul r0, r1, r2
2 mla r0, r1, r2, r3
3 muleq r0, r1, r2
4 mlas r0, r1, r2, r3
5 mulnes r0, r1, r2
6 mlalts r0, r1, r2, r3



Multiply Operations with 64-bit Results

Operations:
SMULL RdHi:RdLo = Rm × Rs @ Signed multiply with 64-bit result
UMULL RdHi:RdLo = Rm × Rs @ Unsigned multiply with 64-bit re-

sult
SMLAL RdHi:RdLo = Rm × Rs +

RdHi:RdLo
@ Signed multiply-accumulate with
64-bit result

UMLAL RdHi:RdLo = Rm × Rs +
RdHi:RdLo

@ Unsigned multiply-accumulate
with 64-bit result

Syntax:
<Operation>{<cond>}{S} RdLo, RdHi, Rm, Rs

Examples

1 smull r0, r1, r3, r4
2 smulls r0, r1, r3, r4
3 umlaleq r0, r1, r3, r4



Divide Instructions

The divide is available on most ARMv7 processors (Cortex M0 and M1 do not have hardware
divide).

Operation:
SDIV Rd = Rn ÷ Rm @ Signed divide
UDIV Rd = Rn ÷ Rm @ Unsigned divide

Syntax:
SDIV|UDIV{<cond>} Rd, Rm, Rn

Example

1 div r0, r1, r2



Accessing the CPSR and SPSR

Operations:
MRS @ Move from Status Register
MSR @ Move to Status Register

Syntax:
MRS{<cond>} Rd, CPSR{_<fields>}
MSR{<cond>} SPSR{_<fields>}, Rd
<fields> is any combination of:

c control field
x extension field
s status field
f flags field

Example Usage:

1 mrs R0, CPSR @ Read the CPSR into r0
2 bic R0,R0, #0xF0000000 @ Clear all of the flags
3 msr CPSR_f, R0 @ Write the flags field to CPSR



Operating System Calls

Operation:
SWI perform software interrupt

Syntax:
SWI <syscall_number>
In Linux, the <syscall_number> is ignored. The actual system call number is passed in
register r7.

Example

1 mov r0, #1 @ fd -> stdout
2 ldr r1, =msg @ buf -> msg
3 ldr r2, =len @ count -> len(msg)
4 mov r7, #4 @ write is syscall #4
5 swi #0 @ invoke syscall



Thumb Mode

The ARM processor has an alternate mode where it executes a 16-bit instruction set known as
Thumb. This instruction allows us to change the mode and branch to Thumb code.

Operation:
BX Like BL, but also change to Thumb mode.

Syntax:
BX{<cond>} <target_address>
Example

1 bx my_thumb_code



Chicken and Egg Problem

You have to learn the register set, instruction set and assembler directives before you can
write assembly.

You have to write assembly in order to learn the register set, instruction set, and assembler
directives.

You may feel unsure of what you are doing and not understand everything at first.

That’s ok. Ask questions if you get stuck.



Instruction Summary

ADC Add with carry
ADD Add
AND AND
B Branch
BIC Bit Clear
BL Branch and Link
BX Branch and Exchange
CDP Coprocessor Data Processing *
CMN Compare Negative
CMP Compare
EOR Exclusive OR
LDC Load Coprocessor Register *
LDM Load Multiple Registers
LDR Load Register
LDREX Load Register Exclusive
MCR Move to Coprocessor Register *
MLA Multiply Accumulate
MOV Move Register or Constant
MRC Move from Coprocessor Register *

MRS Move from CPSR or SPSR register
MSR Move to CPSR or SPSR register
MUL Multiply
MVN Move Negative
ORR OR
RSB Reverse Subtract
RSC Reverse Subtract with Carry
SBC Subtract with Carry
SDIV Signed integer division
STC Store Coprocessor register *
STM Store Multiple
STR Store Register
STREX Store Register Exclusive
SUB Subtract
SWI Software Interrupt
SWP Swap register with memory
TEQ Test bitwise equality
TST Test bits
UDIV unsigned integer division

* Not covered yet.


	Introduction
	Checking Conditions
	Operand2
	Data Processing Instructions
	Special Instructions
	Examples
	Summary

